jueves, 10 de enero de 2019

FRACCIONES EQUIVALENTES. COMPARACIÓN DE FRACCIONES

Fracciones equivalentes




¿Cómo obtener fracciones equivalentes? 



¿Cómo comprobar que dos fracciones son equivalentes?

El siguiente vídeo nos lo explica claramente.
 


Actividades de repaso:


Fracciones equivalentes a un número natural

Una fracción es equivalente a un número natural cuando, al dividir el numerador entre  el denominador de la división es exacta. Ese número es el cociente de la división.
Por ejemplo: 
18/6 = 18:6 = 3. La fracción 18/6 es equivalente a 2.
13/7 = 13:7  no es una división exacta por lo que la fracción 13/7 no es equivalente a un número natural.


Fracciones y números mixtos



Es muy simple convertir un número mixto en fracción:
MULTIPLICAS EL ENTERO POR EL DENOMINADOR Y LE SUMAS EL NUMERADOR. COMO DENOMINADOR EL MISMO:

Ahora vamos a ver como se convierte una fracción impropia en un número mixto:

Es muy sencillo dividimos el NUMERADOR entre el DENOMINADOR, el cociente será la parte entera y el resto será el numerador de la parte fraccionaria, lo único que no varia es el denominador.



Actividades de repaso:



Obtención de fracciones equivalentes

Las Fracciones Equivalentes tienen el mismo valor, aunque parezcan diferentes. 
Estas fracciones son en realidad lo mismo: 

¿Por qué son lo mismo? 
Porque cuando multiplicas o divides a la vez arriba y abajo por el mismo número, la fracción mantiene su valor. 


La regla a recordar es: 
¡Lo que haces a la parte

 de arriba de la fracción
también lo tienes que hacer

 a la parte de abajo! 


  • Cálculo de fracciones equivalentes: 

Actividades de repaso:



Reducción de fracciones a común denominador


Método de los productos cruzados de los numeradores.


Para reducir fracciones a común denominador por el método de los productos

cruzados, se multiplican el numerador y el denominador de cada fracción por los

denominadores de las demás.






Actividades de repaso:


Comparación de fracciones

Hay tres casos:
  • fracciones que tienen el mismo denominador;
  • fracciones que tienen el mismo numerador;
  • fracciones que tienen distinto numerador y denominador.
Primer caso: dos o más fracciones que tienen igual denominador es mayor la que tiene mayor numerador. Ejemplo:
3
      7
----
<    ----
4
        4
La mayor es 7/4.

Segundo casodos o más fracciones que tienen igual numerador es mayor la que tiene menor denominador.
5
       5
---- 
<    ----
4
        2
La mayor es 5/2.

Tercer caso: dos o más fracciones con distinto numerador y denominador hay que reducir fracciones a común denominador y a partir de ahí estamos en el primer caso que ya hemos visto. 

Truco: si te cuesta comprender una fracción, recuerda que el denominador son los caramelos que se reparten y el numerador lo que se cogen. 
Por ejemplo si te dicen que que es mayor si 3/12 ó 1/6. Piensa que te conviene si coger 3 caramelos de 12 ó 1 caramelo de 6... y verás como intuitivamente te aclaras...


Actividades de repaso:

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.

Small Pencil